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Abstract--The viscous stagnation-flow solidification problem for a pure substance is investigated by means 
of quasi-steady, instantaneous-similarity, as well as finite-difference methods. The liquid velocity field, the 
solid and liquid temperature distributions, the solid-liquid interface location, as well as its growth rate, are 
obtained using all three methods and comparisons of the solutions are made. The instantaneous-similarity 
solution at a sufficiently small time is used as the initial field to start the finite-difference calculation. All 
three methods show the existence of an asymptotic limit of the solidification-front position. The effect on 
this limit of several important dimensionless parameters, including the Prandtl number, is presented. 
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1. INTRODUCTION 

Heat transfer problems accompanied by phase change 
are of great interest in a wide range of natural pro- 
cesses and industrial applications such as in the metal, 
glass, plastic, and oil industries ; preservation of food ; 
cryosurgery ; and others. Many analytical and numeri- 
cal techniques have been reported for dealing with 
heat-diffusion-controlled freezing or melting prob- 
lems since Stefan's classical study of the growth of sea 
ice [1], and early work on the problems of liquid-solid 
phase change was confined mainly to the cases in 
which the liquid melt is stagnant [2-4]. 

In addition to the studies of phase change in stag- 
nant media, the need for a better understanding of the 
effect of the convection on the interface behavior and 
the solidification properties has been propelled by 
industrial demand such as the desire for more homo- 
geneous semi-conductor crystals, the requirements in 
the nuclear industry, as well as a better understanding 
of natural ice formation. One of the distinctive fea- 
tures of the liquid-solid phase-changing process 
accompanied by fluid motion which introduces 
additional complications besides the basic non- 
linearity of the transient phase-change problem, is that 
the location of the interface is influenced by the liquid 
motion in addition to the heat transfer to the interface. 
The problem of solid-liquid phase change in a flowing 
melt can be divided into three types : (a) phase change 
in external forced flow, (b) phase change in internal 
forced flow, and (c) phase change in natural-con- 
vection flow [5]. Examples of the studies on the con- 
vection effects on the phase-change process are those 
listed in refs. [6-11]. Lacroix has used a stream func- 
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tion-vorticity-temperature formulation to solve the 
melting problem that includes free convection [7]. A 
numerical study of three-dimensional natural con- 
vection during freezing of water has been made by 
Yeoh et aL [8]. Oldenburg and Spera have set up a 
hybrid model on the basis of the continuum model 
to study the phase change problem which involves 
convection [9]. 

One of the important engineering processes involv- 
ing heat transfer accompanied by the solidification of 
liquid in motion is the metal spray forming process 
during which the high temperature liquid metal drop- 
let deforms and solidifies during its impingment on a 
cold substrate. One way of approach to the study 
of the phase-change mechanism during the droplet 
deformation in such processes is to treat the melt and 
the solid as a continuum which may be represented in 
terms of enthalpy. The heat release during solidi- 
fication is represented in terms of the appropriate 
enthalpy change [12]. The other way of approach is 
using the Neumann solution of  the Stefan model to 
determine the liquid-solid interface location [13-16]. 
For  the latter way of approach, a major shortcoming 
is that it does not take into account the effect of the 
liquid motion on the solidification behavior. Recently, 
a heat transfer and solidification model for the inviscid 
two-dimensional stagnation-flow was developed by 
Rangel and Bian [17, 18] to investigate the effect of 
liquid motion on its solidification behavior. This 
model provides some insight into the effect of the fluid 
motion on the solidification of a droplet impinging on 
a cold substrate in spray deposition. 

The purpose of the present work is to study the 
effect of liquid motion on its solidification behavior in 
the case of a viscous two-dimensional stagnation flow. 
A stability analysis of the stagnation-flow solidi- 
fication problem has been made by Brattkus and 
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NOMENCLATURE 

A potential-flow strain rate 
a ratio of the liquid to solid thermal 

diffusivity (~/~)  
b ratio of the liquid to solid thermal 

conductivity (k]k~) 
c specific heat 
f similarity stream function 
J-" nondimensional  similarity stream 

function (/TL,) 
/7 variable defined as if( 17, r) = ./(; ,  r) 
,~- variable defined as ,~-(q, r) = F~( Y, r) 
.q variable defined as @~£ 
G variable defined as c?ff/~ 
h~ latent heat of solidification 
i grid point in y '  direction 
I total grid points in y '  direction 
k thermal conductivity 

r -  

L, characteristic length (,v/v/A) 
L~ characteristic length (x/"~,'A) 
Pr Prandtl number  (v,/~0 
q" heat flux 
s solid phase thickness 
,f,. nondimensional  solid thickness (s/L,.) 
g~ nondimensional  solid thickness (s/L~) 
St Stefan number  [c(Tm- To)/h~d 
T temperature 
t time 
t~, characteristic time (I/A) 
u velocity component of liquid phase in 

the x-direction 
v velocity component  of liquid phase in 

the >'-direction 
x spatial coordinate parallel to the 

substrate 
y spatial coordinate normal to the 

substrate 

nondimensional  normal coordinate 
(y/L,,) 

~ nondimensional  normal coordinate 
(v/L~) 

v' transformed coordinate 
[(2/Tt)tan'  (f/.f,)] 

t ~ variable defined as f - L ( r ) .  

Greek symbols 
:~ thermal diffusivity 
~l similarity variable (f/,4/~) 
0 nondimensional  temperature 

[(T-- Tm)/(T m - To)] 
2 solidification parameter 
v kinematic viscosity of fluid 
p density 
r nondimensional  time (t/t~). 

Subscripts 
i initial 
1 liquid phase 
o substrate 
m melting 
p iteration index 
s solid phase 
v dimensionless indication (with L,. as 

characteristic length) 
dimensionless indication (with L~ as 
characteristic length). 

Superscripts 
nondimensional  

n discrete-time index. 

Davis [19], who found that when Schmidt numbers 
are large, two-dimensional long-wave disturbances 
are unstable for any degree of constitutional under- 
cooling. In our study, it is assumed that the physical 
properties are independent of temperature. The math- 
ematical model of the viscous stagnation-flow sol- 
idification problem is set up by means of coupling the 
liquid-phase momentum equation and the con- 
ductive-convective liquid energy equation with the 
heat conduction equation in the solid region, as well 
as the energy balance equation at the interface. An 
instantaneous similarity method and a quasi-steady 
approximation are employed to solve the time-depen- 
dent system of equations. Furthermore, a finite- 
difference solution is obtained and compared with the 
two semi-analytical solutions. A parametric study of 
the effect of thermal and fluid properties such as the 
liquid phase Prandtl  number, the Stefan number, the 

ratio of the initial liquid temperature and the cold 
substrate temperature, the ratio of the liquid and solid 
thermal conductivities, as well as the ratio of the liquid 
and solid thermal diffusivities on the solidification 
process is made. The liquid phase velocity and tem- 
perature distributions, and the solid phase tem- 
perature distribution, as well as the behavior of the 
solid-liquid interface location are investigated. 

2. MATHEMATICAL FORMULATION 

A schematic description of the half-space viscous 
stagnation-flow solidification problem is provided in 
Fig. 1. The fluid with temperature 7", higher than its 
melting temperature Tm flows towards a cold substrate 
which is maintained at a constant temperature T0 
lower than Tin. As a result, solidification occurs at the 
surface y = 0 and the solid-liquid interface moves in 
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Fig. 1. Solidification in a half space : the viscous stagnation- 
flow solidification problem. 

the positive normal direction. The liquid-phase flow 
field is an unsteady stagnation-flow with a zero-vel- 
ocity moving boundary. Viscous dissipation is neglec- 
ted, thus rendering the thermal problem one-dimen- 
sional. 

The set of equations for this viscous stagnation- 
flow solidification problem is established as follows. 

The energy equation for the solid phase is 

0 2 T s  1 OT~ 
in 0 < y < s(t) , t  > 0 (1) 

0y 2 ~s at 

with the boundary conditions: T~(O,t)= To and 
T~(s, t) = Tm. 

The continuity and momentum equations of the 
liquid phase are 

0u 0v 
8--~ + ~yy = 0 (2) 

Ou Ou +V~yy = 1 ~p [a2u O2u'~ 
, + (3) 

N + U ~ x  p a y  + V ~ x 2  + Oy2J (4) 

with the boundary conditions : u = v = 0 at y = s(t). 
Furthermore, as y ~ ~ ,  the liquid phase velocity field 
u, v must approach the inviscid stagnation-flow solu- 
tion : 

u =  Ax, v =  - -A(y- -s ( t ) ) .  (5) 

Neglecting viscous dissipation, the energy equation 
for the liquid phase is 

or, a t , +  aT, Fa2r, a2~-~ 
+ Ox v~-y = ~, L777x2 + &--~-v2 J. (6) O~ 

In analogy to the velocity distribution of the steady 
stagnation-flow problem, the viscous liquid-phase vel- 
ocity field is assumed to be the following : 

u = Ax f ' ( t , y ) ,  v = --Af( t ,y) ,  (7) 

w h e r e f  = Of/Oy. 
Substituting the above expressions for u and v into 

the momentum equations, we get 

Of' + A f ,2  _ Af t"  = A + v f "  (8) 
Ot 

with the boundary conditions : f ' ( s ,  t) = O, f(s,  t) = O, 
a n d f ' ( ~ ,  t) = 1. 

For  uniform interface temperature, the liquid ther- 
mal problem is one-dimensional, and the liquid-phase 
energy equation can be simplified to 

aT] A t OTI O 2 T~ 
f (  ,y)-~-y = a , -  (9) & 8y 2 

The energy balance equation at the interface 
y = s(t) is 

k s ~ _ k l O T l _  , ds(t) 7y - p ~ s f  ~ 7  " (1o) 

Introducing the dimensionless temperature 0, 
dimensionless coordinate 97, and dimensionless time z, 
the set of equations [(1), (8), (9) and (10)] is rewritten 
a s  : 

solid-phase energy equation [equation (1)] 

00s 1 020~ 
i n 0 < 9 7 < L ( r ) , r > 0  (11) 

Or - aPr 097 2 

with boundary conditions: 0s(0,z) = - 1  and 
0s(ev, 0 = 0; 

liquid-phase momentum equation [equation (8)], 

%~fr' + f '2  - f f "  = 1 +j~" (12) 

with boundary conditions: f'(gv, T) = 0, f(gv, r) = O, 
and f ' ( o o , z ) =  1, where jr, = 0)~097; liquid-phase 
energy equation [equation (9)], 

O0, 700, 1 0201 
(13) 

Or 097 Pr 897 2 
J 

with boundary conditions : O~(gv, z) = 0 and 
0,(~,  t) = 0~. 

The energy balance at the interface 37 = g [equation 
(10)] becomes 

O0s OOi aPr d& 
b (14) 

097 097 St dr"  

3. QUASI-STEADY SOLUTION 

The Neumann solution of the classical Stefan prob- 
lem [20] shows that the growth rate of the solid front 
is proportional to the square root of time, hence the 
velocity of the solidification front approaches zero as 
time approaches infinity. A similar behavior is 
expected in the convective solidification problem. 
Therefore, a quasi-steady solution is expected for large 
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values of times. The quasi-steady approximation is 
applied by neglecting the time derivative in the gov- 
erning equations. The boundary and initial conditions 
remain unchanged. 

The solid-phase energy equation becomes 

with the solution 

- - = 0  
?.f2 

F 0~-# , (z)  1. (16) 

Now let ,f(f, T ) =  F(y,  ~), where 17 = f - -# , ( r ) ,  SO 
that the liquid-phase momentum equation [12] can be 
rewritten as 

,?.r' _ if,, d#, ~ - + . r ' ~ - . r . r "  = I + # " '  (17) (?~- 

with boundary conditions : .r'(O, r) = .r(O, T) = 0 and 
.r ' (oc,  r) = 1, where .r '  = Off/~'~?. 

Invoking the quasi-steady assumption, equation 
(17) is simplified to 

#'-" - . r # "  = I + P "  (18) 

with boundary condit ions:  i f ' ( 0 ) =  F ( 0 ) =  0 and 
.r(oc) = 1. This is recognized as the steady plane stag- 
nation-flow equation [21]. 

Similarly, the liquid-phase energy equation 
becomes 

~?,Oi 1 ~201 

The asymptotic value of  L can now be obtained by 
using the fact that dg,./dr ~ 0 as r ~ oe. Then equation 
(22) gives 

fo~eXp[-Prf~]'Ydy"]dy' 
(15) Oib 

(23) 

Integrating equation (22) and using the result of 
equation (23) yields 

It can be seen from equation (23) that there exits 
an upper limit of  the solid phase thickness as time goes 
to infinity. This result is consistent with the analysis 
of the inviscid stagnation-flow solidification problem 
[17, 18], indicating a significant difference between the 
stagnation-flow solidification problem and the classi- 
cal solidification problem. 

As the location of  the solid front approaches a 
quasi-steady behavior, the heat flux on the liquid side 
of the interface approaches a finite value. At  the inter- 
face, the heat flux on the solid side continues to 
decrease as the solid front advances. When the solid- 
phase heat flux equals the finite liquid-phase value, no 
further solidification is possible. Since the asymptotic  
value of the solid-front location is determined by heat 
transfer in the absence of  solidification (or when sol- 
idification ceases), it is not surprising that  it is inde- 

(19) pendent of the Stefan number. Fur ther  discussion of 
this behavior will be made in Section 7.4. 

The solution of equation (19) is 

;=pl ,ri d+ 
OI Oi;;:exp[_Pr~.yd), , ,]dy" (20) 

or alternatively 

[ [ c  1 exp - Pr .rd Y" d Y' 
JO J 

01 -- 0i ~ v , (21) ; l i  exp - Pr ~ ,rid Y" 

where F (y , r )  is the quasi-steady solution of  the 
momentum equation (12), that is, the solution of 
equation (18). Using the solutions of  the solid- and 
liquid-phase energy equations, the interface energy 
balance [equation (14)] can be written as 

aPr d#,, 1 Oib 

exp - Pr dy" dy' 
) 

(22) 

4. FINITE-DIFFERENCE SOLUTION OF THE 
LIQUID-PHASE MOMENTUM EQUATION 

The momentum equation (12) may be solved 
numerically in its transformed form [equation (17)] 
by introducing a new variable G = . r ' ( ? ,  T) = O.r/c~? 
so that equation (12) is transformed into the following 
two coupled equations : 

(?G ~?2G (d#,. .r~/)G - -G  2 
~r (372 + ~ z  + ) ~ q ~ + l  (25) 

0.r 
G - (? ? (26) 

with the corresponding boundary condit ions:  
F(r, 0) = 0, G(T, 0) = 0 and G(r, Go) = 1. The initial 
velocity field of the liquid phase is chosen as the solu- 
tion of the steady plane stagnation-flow equation [21], 

.r,2 _.r•,, = 1 + k  ~''. (27) 

Equation (25) is rewritten into finite-difference form 
by applying the Crank-Nicolson  method, and the 
resulting algebraic system of equations can be solved 
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with the TDMA method [22]. Equation (26) is solved 
with the modified Euler method. 

5. INSTANTANEOUS-SIMILARITY SOLUTION OF 
THE ENERGY EQUATIONS 

In this section, the instantaneous-similarity method 
is applied to solve the energy equations of the solid 
and liquid phases (1 l) and (13), as well as the interface 
energy balance equation (14), while the momentum 
equation of the liquid phase (12) is solved by the finite- 
difference method described above. 

Introducing a similarity variable r/, the governing 
equations [equations (11), (13), (141] are transformed 
to: 

Solid-phase energy equation [equation (11)] 

00s 1 020~ 1 00s 
T + (28) 

Or aPr Or~ 2 2 r / ~  

with boundary conditions : 0~(0, r) = - 1 and 
0s(2,., z) = 0, where 2~ = L(r)/xfz is in general a func- 
tion oft .  Note that in the classical Stefan solidification 
problem, s(t) is proportional to x//t so that the par- 
ameter 2 is equal to a constant in that case. 

Liquid-phase energy equation [equation (13)] 

001 [ 1 1001 1 0201 (29) 

where ~-(r/, z) = ff(17, z) =)~'(17, t) and with boundary 
conditions : 0~(2, z) = 0 and 0,(oo, z) = 0i; 

The energy balance at the interface location [equa- 
tion (14)] becomes 

00~ _ b 001 1 aPr aPr d2~ 
0r/ 0 q - 2  ~ 2 ~ + S t - Z ~ - z  atr /=2~.  

(30) 

In accordance with the instantaneous similarity 
assumptions, we neglect terms involving derivatives 
with respect to z and integrate the resulting ordinary 
differential equations. The results are expected to be 
valid for small values of r, but as will be shown below, 
they are also valid for large values of z. 

The solid-phase temperature distribution is 

erf(½ a x ~ r / )  
0 ~ = - - l + e r f ( ½  a x / ~ 2 0 ,  (31) 

while the liquid-phase temperature distribution is 

f° [ '°',: 1/2 fj" - ]dr/' exp -- ~ r/ -- Prz ~(r/", z) dr/" 

0t = 0~ 

exp - ~-  ~(q",  z) dr/" dr/' 
J 2  k 

(32/ 

The interface energy balance equation becomes 

x/a~ exp(-¼ae r22) aer 

erf(~- ax/~2v ) }-~ 2~ 

1 2 bOi exp [ -  ~ Pr2~ ] 
- 0  

- -  o o  q '  flexp[_Pr,2 1/2 

(33) 

from which 2~ can be determined. Equation (33) shows 
that 2v is a function of time, in contrast with the 2~ of 
the classical Stefan problem which is independent of 
time. By coupling the solution of equations (25) and 
(26) with the solution of equation (33), the root of 
equation (33), 2 ,  is obtained by iteration at each time. 

6. NUMERICAL SOLUTION BY FINITE- 
DIFFERENCE METHOD 

The set of governing equations consists of the solid- 
phase energy equation [equation (l 1)], the liquid- 
phase momentum equation [equation (12)], the liquid- 
phase energy equation [equation (13)], and the inter- 
face energy-balance equation [equation (14)]. 

Introducing the following transformation : 

y' = 2 t an- '  ( ~ )  (34) 

the coordinates (y, z) are transformed into a new coor- 
dinate system (y', z), so that the semi-infinite domain 
is transformed into a finite domain and the moving- 
interface problem is converted into a fixed boundary 
problem• 

The solid-phase energy equation [equation (11)] is 
transformed to 

00s 1 4 cos4/n[~- "~ 1 0 2 0 s | ~  | -  -F ls in(ny ' )  ldg"  

l 2 , . f~  \ 1]O0, 
- sin(ny ) coV { x y ' } ~  ~1-~, 

aPr n \ z ) g~ dcy 

f o r 0 < y ' < 0 . 5  (35) 

with boundary conditions: 0s = - 1  at .9 = 0, and 
0s = 0 at 37 = 0.5. 

Introducing the variable g = 0f/017, the liquid phase 
momentum equation [equation (12)] can be rewritten 
as the following two coupled equations : 

-Og of Og 02g + f  f f f i+ l_g2 ,g  (36) 
& - 0)72 = 

with boundary conditions : )~= 0 and g = 0 at 37 = g~, 
a n d g ~ l a s ) 7 ~ .  

The transformed liquid phase momentum equa- 
tions are 
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O q 4 4(~ ~ 1 0r--~ 2cOS t2) ' /7  (~,2~ 
s? ~ 0v ' :  

I 1 I dg,. 2 sin0rv') + sin0rY') g,- d~- - ~ " 

×COS2(TV,) 1 2 ~  ~/~ \1 ]Oq .¢~ + - / c o s -  | v ' / -  1,01], + 1 
- -  ~' \2 "  )g~,J, y '  -g-~ 

for 0.5 < v' < I (37) 

and 

,q = - c o s - / ~  v ' i T  ~=-; 
sr \ .  )s',. c,y 

with boundary conditions: [ =  0 
y ' =  0.5, a n d 9  = 1 at y ' =  1. 

(38) 

and g = 0 at 

The liquid-phase energy equation [equation (13)] is 
transformed to 

c0, l 4 ( l z )  l (720. 
- -  C O S  4 - -  l : '  ~ 

Or Pr 7r e 2 d~7 (')y,2 

1 l d g ,  1 2 
+ - s i n ( ~ y ' ) 7  sin(~y') 

LTr & dr Pr 

x c o ¢  [7  t " / o  + . / c o s - / 7  v ' / v / = - ;  
\ z  ),~:- rr \ z "  IS, Z )  

for 0.5 < y'  < I (39) 

with boundary conditions:  01 = 0 at v ' =  0.5, and 
0 1 = 0 i a t y ' =  1. 

Finally, the interface energy equation [equation 
(14)] is transformed to 

00~ b OOi aPr d2, 
Or' g.l" - S-t rc'i" c l r- (40) 

By applying the Crank Nicolson method, equa- 
tions (35), (37) and (39) can be written in finite-differ- 
ence form and can be solved with standard techniques. 

7. RESULTS AND DISCUSSION 

In this section, the temperature distributions in both 
the solid and liquid phases as well as the time evolution 
of  the interface location obtained from the quasi-ste- 
ady solution, the instantaneous-similarity method as 
well as the finite-difference method are displayed, and 
comparisons between the three methods are made. In 
addition, parametric studies are made to demonstrate 
the effect of  the Prandtl and Stefan numbers and the 
dimensionless ratios 0~, a, and b on the solidification 
behavior. In all the figures, L~ = x//~/A is used as the 
length scale to nondimensionalize the interface 
location s and the normal coordinate v. 

7.1. Evaluation of the instantaneous-similarity method 
An estimate of  the accuracy of  the instantaneous- 

similarity method is obtained by calculating the mag- 

2,0 

L5 / 

tff}= 1.0 Pr=a=b~St=ei=l / /  

0 

0.0 , i , 

-3.0 -2.0 -1.0 0.0 1.0 2.0 

Fig. 2. Effect of the starting time on the finite-difference 
solution : solidification front vs time. 

nitude of  the term r(gO/OT) for the solid phase. F rom 
the solution of  the solid phase temperature [equation 
(31)], we obtain 

O0~ = _ e r f (x /~r rq /2  ) e x p ( - a P r 2 ~ / 4 ) x ~ r / ~  02,. 

?r (erf(ax/~r2,,/2)) 2 Or " 

(41) 

The maximum value of  80 d &  is at q = 2,. where 

~0,_ = ,jiaPr/Tzexp(-aPr2~/4) 02v (42) 

0r ,,=; e r f ( ~ 2 , . / 2 )  Or ' 

It can be shown that during the initial stages of  
solidification, the value of  r(00d&)l,_;., is small 
enough to ensure the accuracy of  the instantaneous- 
similarity solution. 

7.2. Numerical considerations jbr the finite-d(ff&ence 
method 

The system of equations (35)-(40) has a singularity 
at r = 0 (g = 0). Therefore, the finite-difference solu- 
tion cannot be started at r = 0, but instead must be 
initiated at some sufficiently-small time r = %. It has 
been shown in the previous section that the instan- 
taneous-similarity solution yields the correct limiting 
form of  the solution for r --* 0. 

In Fig. 2, a comparison of  the dimensionless solid- 
front time evolution obtained with the finite-difference 
method starting from different initial fields is made. 
For  comparison purposes, the finite-difference solu- 
tion uses both the instantaneous-similarity and the 
quasi-steady solutions as the initial fields. It can be 
observed that the three solutions approach the same 
upper limit as time becomes very large. The finite- 
difference solution which starts from the quasi-steady 
initial field gradually evolves towards the finite- 
difference solution which uses the instantaneous-simi- 
larity solution as the initial field. This demonstrates 
that the finite-difference solution converges to the cor- 
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Fig. 3. Comparison of the solidification behavior obtained with different methods : (a) solid-front evolution 
vs time ; (b) temperature distributions ; (c) velocity distributions ; (d) velocity gradient distributions. 

rect long-time behavior, even if it is started with an 
inaccurate initial condition, such as the one obtained 
from the quasi-steady solution. It can also be seen that 
using the instantaneous-similarity solution at either 
z0 = 0.001 or To = O.O1 as the initial field for the finite- 
difference method makes no significant difference in 
the solution of  the solid-front location. Thus we can 
conclude that z0 = O.O1 is an appropriate small time 
to ensure the accuracy of  the finite-difference solution 
at later times. In the following parametric study, all 
the finite-difference solutions are initiated at T0 = 0.01 
from the instantaneous-similarity solution. 

7.3. C o m p a r i s o n  o f  the  m e t h o d s  

Figure 3 provides a comparison of  the solidification 
behavior obtained with the three methods of  solution 
for the case o f  P r  = a = b = Oi = S t  = 1. In Fig. 3(a), 
a comparison of  the time evolution of  the dimen- 

sionless solid-front location g~ obtained with the three 
methods is made. The finite-difference solution is 
taken as the e x a c t  solution. It can be observed that in 
comparison to the finite-difference method, the quasi- 
steady method overpredicts the solidification rate, 
while the instantaneous-similarity method under- 
predicts it. It can also be observed that the three solu- 
tions approach the same upper limit as time becomes 
very large. Figure 3(b) shows a comparison of  the 
predicted temperature distributions. During the initial 
stages of  solidification (z = 0.1), the numerical solu- 
tion is much closer to the instantaneous-similarity 
solution than to the quasi-steady solution, which 
yields an accurate description of  the solidification 
behavior only for very large times. The instantaneous- 
similarity solution is accurate for small times, as dem- 
onstrated before. At z = 1, the numerical solution lies 
between the solution obtained with the two analytical 
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methods. Again expectedly, as time becomes very 
large (r = 100), the three solutions converge to the 
same result, with the instantaneous-similarity method 
lagging slightly behind. The corresponding fluid 
behavior is shown in Fig. 3(c, d). Figure 3(c) shows 
the normal-velocity distribution obtained from the 
three methods at different stages of solidification, 
while the corresponding normal-velocity gradient pro- 
file is shown in Fig. 3(d). In the early stages of sol- 
idification (r = 0.1), both the finite-difference and the 
instantaneous-similarity solutions yield an accurate 
description of the liquid-phase velocity distribution, 
with the quasi-steady solution overpredicting the 
growth. At the intermediate stages of solidification 
(r = 1), the instantaneous-similarity solution tends to 
lag behind the finite-difference solution. At the late 
stages of solidification (z = 100), both the quasi- 
steady and the finite-difference solutions provide 
an accurate description of the fluid motion, with the 
instantaneous-similarity solution lagging slightly 

behind. As time goes to infinity, all three methods 
yield the same result. 

7.4. Parametric studies 
This section contains solidification results for 

different fluids and thermal properties to demonstrate 
the effect of the Prandtl number, the Stefan number 
and the dimensionless ratios 0~, a and b. 

7.4.1. Effect ~ f  Pr number. Figure 4 shows the 
instantaneous-similarity solution of the variation of 
2~ with z for different values of Pr for the case of 
0, = a = b = 1. It should be noted that 2, approaches 
0 as r approaches infinity and 2~ decreases faster for 
smaller values of the Prandtl number. 

Moreover, for a fixed value of r, a larger value of 
the Prandtl number corresponds to a higher value of 
2~, and hence a larger value of g~. Notice that the 
length scale in all the figures is L~, hence the real value 
of solid thickness is s = g~VI~/'A = s~x/v/(aPrA )._ For 
a chosen value of z, if we compare the case of 
Pr = 0.01 with that of Pr = 100, it can be seen that 
although the value of 2~ for the case of Pr = 0.01 is 
smaller than that for the latter case, the dimensional 
value of the solid-front location s will be much larger 
for the former case. 

Figure 5 shows the evolution of the dimensionless 
solid front g~ with time for three different Prandtl 
numbers obtained with the quasi-steady and the 
instantaneous-similarity method. It can be seen that 
the dimensionless solid front grows faster for higher 
Pr number. Moreover, the dimensionless solid front 
location approaches an upper limit as time becomes 
very large. This dimensionless upper limit is larger for 
higher Pr number. Again note that, as explained in 
the discussion of Fig. 4, the corresponding value of 
the dimensional solid-front location and its upper 
limit are higher for the fluid with smaller Pr. 

Figure 6 shows the dependence of the dimensionless 
solid-front upper limit location on the Prandt! number 
for the case of (1) 0 i = a = b = l ,  (2) 0i= 1, 
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a = b = 0.5, and (3) 0~ = 0.5, a = b = 1 obtained with 
the quasi-steady method. It can be observed that the 
upper limit of  the dimensionless solid-front position 
increases with the increase of Prandtl  number,  and 
that the limit is larger for smaller values of 0+, a and 
b. As explained in the discussion of Fig. 4, the value 
of the dimensional solid-front upper limit decreases 
with the increase of Pr. Lower values of 0i, a and b 
correspond to reduced heat transfer to the interface, 
hence the solid front can increase to a higher value. 

In Fig. 7, the finite-difference prediction of  the sol- 
idification behavior for different Pr is analyzed for the 
case of 0~ = 1, a = 1, b = 1. In the initial stages of 
solidification (~ < 1), the solid-front growth rates are 
almost the same for the fluids with different Pr. As 
time increases, the dimensionless solid-front grows 
faster for fluids with larger Pr and reaches a higher 
upper limit than that corresponding to a lower Pr 
number  [Fig. 7(a)]. The temperature distributions at 
different times are shown in Fig. 7(b), from which it 
can be seen that for very small times (z = 0.1), the 
temperature distributions for fluids with different Pr 
are almost the same. As time increases (z = 1 for 
example), at a same dimensionless position, the tem- 
perature for the flow with larger Prandtl  number  drops 
to a value lower than the flow with smaller Prandtl  
number. As time increases further, the temperature 
distributions reach their quasi-steady behavior. The 
corresponding liquid-phase normal-velocity dis- 
tr ibution and its gradient are shown in Fig. 7(c, d). It 
can be observed that along the dimensionless normal 
direction )7, the gradient of the normal  velocity for 
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the fluid with large Pr (100) increases much slower 
than that for the fluid with smaller Pr (0.01). The 
normal velocity increases more rapidly along the 
dimensionless normal distance from the interface for 
a fluid with smaller Pr number. For  the fluid with 
larger Pr (100), the viscous boundary layer is thicker, 
and a longer distance is needed for the normal velocity 
to approach the inviscid value. The normal-velocity 
gradient is much larger near the interface for the case 
of  smaller Pr number indicating that for such a fluid, 
the convective heat transfer is more important  as com- 
pared to the case of  a fluid with larger Pr. The main 
conclusion is that the rate of  solidification during stag- 
nation flow is more affected by convection in the case 
of  a fluid with smaller Pr number. 

7.4.2. Effect of St number. Figure 8(a) shows the 
finite-difference prediction of  the variation of  the 
dimensionless solid thickness ,~ with T for different 

values of  the Stefan number for the case of 
Pr = 0i = a = b = 1. It can be seen from Fig. 8(a) that 
.~ increases with T, and that there exists an upper limit 
of , f  as z approaches infinity. It can also be observed 
that this limit is independent of  the Stefan number 
and that ,fincreases faster for larger St. A larger Stefan 
number indicates higher energy-transfer rate as com- 
pared with latent-heat release rate, resulting in a faster 
solidification rate. Figure 8(b) shows the temperature 
distributions along the normal direction during the 
early (r =0 .1 )  and late (T = 100) stages of  sol- 
idification for cases with different Stefan number. It 
can be observed that in the early stages of  solidi- 
fication, variations in Stefan number bring about 
changes in the temperature distribution and the inter- 
face location, and a larger Stefan number results in 
faster growth of  the solid front. At very large times, 
however, the temperature distribution becomes inde- 
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pendent of Stefan number. In Fig. 8(c, d), the cor- 
responding normal-velocity distribution and its gradi- 
ent along the nondimensional normal direction during 
the early (r = 0.1) and late (z = 100) stages of sol- 
idification for cases with different Stefan number are 
shown. The behavior of the velocity distribution is 
similar to that of the temperature distribution. Vari- 
ations in Stefan number bring about changes in the 
velocity distribution in the early stages of solidi- 
fication. While at a very large time, the velocity dis- 
tribution becomes independent of Stefan number. 

7.4.3. Effect of  a, b and Oi. Figure 9(a) shows the 
effect of 0, a and b on the solid front growth rate 
obtained by the finite-difference solution. The dimen- 
sionless thickness g increases faster for smaller a, b 
and 0~. For  the cases with smaller a, b or 0~, less 
heat is transferred from the liquid to the solid phase 
through the interface, so that solidification occurs 

more rapidly. Figure 9(b) shows the temperature dis- 
tribution during the early (z = 0.1) and late (z = 100) 
stages or solidification for cases with different values 
of 0~, a and b. It can be seen that during the early 
stages of solidification and at the same position in the 
liquid phase, the liquid temperature is lower for higher 
a and b. In the early stages of solidification, higher a 
and b means that heat transfer is more rapid in the 
liquid than in the solid phase, and therefore, the liquid 
temperature drops to a lower value as compared to a 
case with lower a and b. However, during the late 
stages of solidification, the temperature distribution 
and the solid front location approach their asymptotic 
limits. For  a fixed position in the liquid or solid phase, 
the temperature 0~ or 0s is lower for the cases with 
lower a, b. Thus, it can be concluded that variations 
in the parameters a and b affect both the initial and 
the long time behavior of the solution. Corre- 
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spondingly, Fig. 9(c, d) shows the normal-velocity 
distribution and its gradient along the dimensionless 
normal coordinate y~ during the early (r = 0.1) and 
late (~ = 100) stages of solidification. It can be con- 
cluded that the gradient of the normal-velocity dis- 
tribution is mainly determined by the Pr of the fluid, 
while the interface location is affected by several par- 
ameters ( Pr, a, b and 0i). 

Figure 10(a--c) shows the growth rate of the solid- 
liquid interface location and the time variation of the 
heat fluxes at the interface on both the liquid and solid 
sides for three different Pr numbers (0.01, 1,100) with 
a = b = S t  = 0~ = 1. The existence of a finite asymp- 

totic limit for the solidification front in the stagnation- 
flow problem may be understood by examining these 
figures. The fact that the thermal field in the liquid 
phase approaches a quasi steady behavior in the late 
stages of solidification implies that the heat flux at the 
interface on the liquid side decreases not to zero, but 
to a finite value in the limit of t ~ ~ .  Moreover, the 
behavior of the heat flux at the interface on the solid 
side for the stagnation-flow solidification problem is 
similar to the one in the classical solidification prob- 
lem. In the classical problem, the solid thickness s 
increases as t 1'2 and thus the solid heat flux decreases 
as t ~.2 the same rate of decrease of the liquid heat 
flux. Since energy arriving at the interface by con- 
duction from the liquid must ultimately be conducted 
through the solid into the substrate, the solid heat flux 
must be at least as large as the liquid heat flux. In the 
stagnation-flow solidification problem, the solid front 
can only rise to a height which results in a solid- 
phase heat flux equal to the liquid-phase heat flux. No 
further solidification is possible after this point. 

7.5. Solidification o f  water and aluminum 
Some calculations involving the solidification pro- 

cess of water and aluminum using the finite-difference 
method are discussed next. The time-evolution of the 
solid front is shown in Fig. 11, where a comparison 
of the solid-front growth with time corresponding to 
different strain rates is made. Values of the other rel- 
evant parameters are included in the figure. For water 
[Fig. 11 (a)], the cold substrate temperature is set at 
20 K below the melting temperature and the initial 
liquid temperature is chosen as 20 K above the melting 
temperature. The parameters a, b and Pr are deter- 
mined by calculating the liquid state properties at 
T = ( T i + T m ) / 2  and the solid state properties at 
T = (To+ Tm)/2. The Neumann solution of the stag- 
nant solidification model (Stefan problem) is also 
shown in the figure. It can be observed that as time 
increases, the solid-front location approaches an 
upper limit for the stagnation-flow solidification 
model, while in the case of stagnant solidification 
model, the solid front grows indefinitely with time. A 
higher value of the strain rate corresponds to a lower 
upper limit of the solid-front location, which indicates 
that the effect of the convective heat transfer becomes 
more important. On the other hand, it can be seen that 
the time-evolution of the solid-front of the stagnation- 
flow solidification problem approaches the Neumann 
solution as the liquid-flow strain rate approaches zero. 
Similar behavior can be observed in Fig. 11 (b) for 
the stagnation-flow solidification of aluminum. In the 
calculation, the initial liquid temperature is 100 K 
above its melting temperature and the cold substrate 
temperature is 300 K. The parameters a, b and Pr are 
calculated in the same way as indicated in reference 
to Fig. 11 (a). The range of values for the flow strain 
rate A is chosen in reference to its magnitude in high- 
speed spray deposition process for which A is of the 
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the Neumann solution of the classical Stefan problem, (a) water, (b) aluminum. 

order of v/D, where v is the liquid droplet impinging 
velocity, and D is the droplet diameter. 

8. C O N C L U S I O N S  

The viscous stagnation-flow Stefan solidification 
problem has been defined and a quasi-steady approxi- 
mation, an instantaneous-similarity method as well as 
a finite-difference method have been used to solve it 
and to obtain the solid- and liquid-phase temperature 
distribution, the liquid-phase velocity distribution, 
and the interface location. With the use of the quasi- 
steady approximation, a solution of the problem valid 
for the final stages of solidification is obtained. Fur- 
thermore, by applying the method of instantaneous 
similarity, the temperature field, the solid-liquid inter- 
face position and its growth rate valid for the initial 

stages of solidification are obtained. Based on the 
semi-analytical solutions obtained above, the stag- 
nation-flow solidification problem is solved numeri- 
cally by a finite-difference method after a coordinate 
transformation to a fixed domain. The Crank-Nic- 
olson method is applied to obtain the finite-difference 
form of the liquid-phase momentum equation, the 
liquid- and solid-phase energy equations, and the 
resulting difference equations are solved by the 
TDMA method. The location of the liquid-solid inter- 
face is obtained by solving the interface energy balance 
equation coupled with the solid and liquid phase 
energy equations, as well as the liquid phase momen- 
tum equation. To avoid the singularity of the system 
of equations at the starting time, the instantaneous 
similarity solution at some sufficiently-small time is 
used to initiate the finite-difference iteration. 
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Compar i sons  of  the finite-difference solution with 
the ins tan taneous  similarity solution as well as with 
the quasi-steady solution of  the velocity field, tem- 
perature dis t r ibut ion and  solid phase thickness at 
different times show tha t  in the initial stages of  sol- 
idification, the finite-difference method  and  the instan- 
taneous similarity method  yield very similar solutions,  
while the quasi-steady method  overpredicts the 
growth of  the solid front.  At  in termediate  times, only 
the finite-difference solution is accurate. At  very large 
time, the three methods  converge to the same solution. 
All three methods  are used to show that  the sol- 
idification f ront  grows asymptotical ly to a finite 
max imum value as t ime goes to infinity. Parametr ic  
studies indicate tha t  for very small Prandt l  n u m b e r  
(Pr < 0.01), the behavior  of  the solid-front evolut ion 
is very close to the result obta ined with the inviscid 
stagnation-flow solidification model  [17, 18]. 
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